MakeItFrom.com
Menu (ESC)

240.0 Aluminum vs. N08020 Stainless Steel

240.0 aluminum belongs to the aluminum alloys classification, while N08020 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 240.0 aluminum and the bottom bar is N08020 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.0
15 to 34
Fatigue Strength, MPa 140
210 to 240
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 240
610 to 620
Tensile Strength: Yield (Proof), MPa 200
270 to 420

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 600
1410
Melting Onset (Solidus), °C 520
1360
Specific Heat Capacity, J/kg-K 860
460
Thermal Conductivity, W/m-K 96
12
Thermal Expansion, µm/m-K 22
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 65
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 12
38
Density, g/cm3 3.2
8.2
Embodied Carbon, kg CO2/kg material 8.7
6.6
Embodied Energy, MJ/kg 150
92
Embodied Water, L/kg 1100
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2
83 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 280
180 to 440
Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 43
24
Strength to Weight: Axial, points 20
21
Strength to Weight: Bending, points 26
20
Thermal Diffusivity, mm2/s 35
3.2
Thermal Shock Resistance, points 11
15

Alloy Composition

Aluminum (Al), % 81.7 to 86.9
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 7.0 to 9.0
3.0 to 4.0
Iron (Fe), % 0 to 0.5
29.9 to 44
Magnesium (Mg), % 5.5 to 6.5
0
Manganese (Mn), % 0.3 to 0.7
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0.3 to 0.7
32 to 38
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0