MakeItFrom.com
Menu (ESC)

242.0 Aluminum vs. AISI 334 Stainless Steel

242.0 aluminum belongs to the aluminum alloys classification, while AISI 334 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 242.0 aluminum and the bottom bar is AISI 334 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70 to 110
180
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 0.5 to 1.5
34
Fatigue Strength, MPa 55 to 110
150
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 150 to 240
360
Tensile Strength: Ultimate (UTS), MPa 180 to 290
540
Tensile Strength: Yield (Proof), MPa 120 to 220
190

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 210
1000
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 530
1370
Specific Heat Capacity, J/kg-K 870
480
Thermal Expansion, µm/m-K 22
16

Otherwise Unclassified Properties

Base Metal Price, % relative 12
22
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 8.3
4.1
Embodied Energy, MJ/kg 150
59
Embodied Water, L/kg 1130
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.3 to 3.4
140
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 340
96
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 16 to 26
19
Strength to Weight: Bending, points 23 to 32
19
Thermal Shock Resistance, points 8.0 to 13
12

Alloy Composition

Aluminum (Al), % 88.4 to 93.6
0.15 to 0.6
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.25
18 to 20
Copper (Cu), % 3.5 to 4.5
0
Iron (Fe), % 0 to 1.0
55.7 to 62.7
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Nickel (Ni), % 1.7 to 2.3
19 to 21
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.7
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0.15 to 0.6
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0