MakeItFrom.com
Menu (ESC)

242.0 Aluminum vs. AISI 409Cb Stainless Steel

242.0 aluminum belongs to the aluminum alloys classification, while AISI 409Cb stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 242.0 aluminum and the bottom bar is AISI 409Cb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 0.5 to 1.5
24
Fatigue Strength, MPa 55 to 110
140
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Shear Strength, MPa 150 to 240
270
Tensile Strength: Ultimate (UTS), MPa 180 to 290
420
Tensile Strength: Yield (Proof), MPa 120 to 220
200

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 210
710
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 530
1410
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 130 to 170
25
Thermal Expansion, µm/m-K 22
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 44
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 96 to 130
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
8.5
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.2
Embodied Energy, MJ/kg 150
31
Embodied Water, L/kg 1130
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.3 to 3.4
83
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 340
100
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 16 to 26
15
Strength to Weight: Bending, points 23 to 32
16
Thermal Diffusivity, mm2/s 50 to 62
6.7
Thermal Shock Resistance, points 8.0 to 13
15

Alloy Composition

Aluminum (Al), % 88.4 to 93.6
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0 to 0.25
10.5 to 11.7
Copper (Cu), % 3.5 to 4.5
0
Iron (Fe), % 0 to 1.0
84.9 to 89.5
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Nickel (Ni), % 1.7 to 2.3
0 to 0.5
Niobium (Nb), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.7
0 to 1.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0