MakeItFrom.com
Menu (ESC)

242.0 Aluminum vs. ASTM Grade HP Steel

242.0 aluminum belongs to the aluminum alloys classification, while ASTM grade HP steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 242.0 aluminum and the bottom bar is ASTM grade HP steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70 to 110
140
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 0.5 to 1.5
5.1
Fatigue Strength, MPa 55 to 110
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 180 to 290
490
Tensile Strength: Yield (Proof), MPa 120 to 220
260

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 640
1370
Melting Onset (Solidus), °C 530
1330
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 130 to 170
12
Thermal Expansion, µm/m-K 22
16

Otherwise Unclassified Properties

Base Metal Price, % relative 12
34
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 8.3
5.8
Embodied Energy, MJ/kg 150
82
Embodied Water, L/kg 1130
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.3 to 3.4
21
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 340
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 16 to 26
17
Strength to Weight: Bending, points 23 to 32
17
Thermal Diffusivity, mm2/s 50 to 62
3.2
Thermal Shock Resistance, points 8.0 to 13
11

Alloy Composition

Aluminum (Al), % 88.4 to 93.6
0
Carbon (C), % 0
0.35 to 0.75
Chromium (Cr), % 0 to 0.25
24 to 28
Copper (Cu), % 3.5 to 4.5
0
Iron (Fe), % 0 to 1.0
29.2 to 42.7
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.35
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 1.7 to 2.3
33 to 37
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.7
0 to 2.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0