MakeItFrom.com
Menu (ESC)

242.0 Aluminum vs. AWS E316L

242.0 aluminum belongs to the aluminum alloys classification, while AWS E316L belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 242.0 aluminum and the bottom bar is AWS E316L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 0.5 to 1.5
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 180 to 290
550

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 530
1390
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 130 to 170
15
Thermal Expansion, µm/m-K 22
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 44
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 96 to 130
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
20
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 8.3
4.0
Embodied Energy, MJ/kg 150
55
Embodied Water, L/kg 1130
160

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 16 to 26
19
Strength to Weight: Bending, points 23 to 32
19
Thermal Diffusivity, mm2/s 50 to 62
4.0
Thermal Shock Resistance, points 8.0 to 13
14

Alloy Composition

Aluminum (Al), % 88.4 to 93.6
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0 to 0.25
17 to 20
Copper (Cu), % 3.5 to 4.5
0 to 0.75
Iron (Fe), % 0 to 1.0
58.6 to 69.5
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.35
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 1.7 to 2.3
11 to 14
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.7
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0