MakeItFrom.com
Menu (ESC)

242.0 Aluminum vs. EN 1.3533 Steel

242.0 aluminum belongs to the aluminum alloys classification, while EN 1.3533 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 242.0 aluminum and the bottom bar is EN 1.3533 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70 to 110
210 to 220
Elastic (Young's, Tensile) Modulus, GPa 73
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 180 to 290
690 to 1420

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 210
440
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 530
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 130 to 170
47
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 44
7.9
Electrical Conductivity: Equal Weight (Specific), % IACS 96 to 130
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 12
5.0
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 8.3
1.8
Embodied Energy, MJ/kg 150
25
Embodied Water, L/kg 1130
60

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 16 to 26
24 to 50
Strength to Weight: Bending, points 23 to 32
22 to 36
Thermal Diffusivity, mm2/s 50 to 62
13
Thermal Shock Resistance, points 8.0 to 13
20 to 42

Alloy Composition

Aluminum (Al), % 88.4 to 93.6
0 to 0.050
Carbon (C), % 0
0.15 to 0.2
Chromium (Cr), % 0 to 0.25
1.3 to 1.6
Copper (Cu), % 3.5 to 4.5
0 to 0.3
Iron (Fe), % 0 to 1.0
92.9 to 94.9
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.35
0.4 to 0.7
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 1.7 to 2.3
3.3 to 3.8
Oxygen (O), % 0
0 to 0.0020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.7
0 to 0.4
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0