MakeItFrom.com
Menu (ESC)

242.0 Aluminum vs. EN 1.4418 Stainless Steel

242.0 aluminum belongs to the aluminum alloys classification, while EN 1.4418 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 242.0 aluminum and the bottom bar is EN 1.4418 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 0.5 to 1.5
16 to 20
Fatigue Strength, MPa 55 to 110
350 to 480
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 150 to 240
530 to 620
Tensile Strength: Ultimate (UTS), MPa 180 to 290
860 to 1000
Tensile Strength: Yield (Proof), MPa 120 to 220
540 to 790

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 210
870
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 530
1400
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 130 to 170
15
Thermal Expansion, µm/m-K 22
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 44
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 96 to 130
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
13
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.8
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1130
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.3 to 3.4
130 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 340
730 to 1590
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 16 to 26
31 to 36
Strength to Weight: Bending, points 23 to 32
26 to 28
Thermal Diffusivity, mm2/s 50 to 62
4.0
Thermal Shock Resistance, points 8.0 to 13
31 to 36

Alloy Composition

Aluminum (Al), % 88.4 to 93.6
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0 to 0.25
15 to 17
Copper (Cu), % 3.5 to 4.5
0
Iron (Fe), % 0 to 1.0
73.2 to 80.2
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.35
0 to 1.5
Molybdenum (Mo), % 0
0.8 to 1.5
Nickel (Ni), % 1.7 to 2.3
4.0 to 6.0
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.7
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0

Comparable Variants