MakeItFrom.com
Menu (ESC)

242.0 Aluminum vs. EN 1.4818 Stainless Steel

242.0 aluminum belongs to the aluminum alloys classification, while EN 1.4818 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 242.0 aluminum and the bottom bar is EN 1.4818 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70 to 110
180
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 0.5 to 1.5
40
Fatigue Strength, MPa 55 to 110
280
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 150 to 240
480
Tensile Strength: Ultimate (UTS), MPa 180 to 290
700
Tensile Strength: Yield (Proof), MPa 120 to 220
330

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 210
1050
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 530
1370
Specific Heat Capacity, J/kg-K 870
490
Thermal Conductivity, W/m-K 130 to 170
17
Thermal Expansion, µm/m-K 22
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 44
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 96 to 130
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 12
16
Density, g/cm3 3.1
7.7
Embodied Carbon, kg CO2/kg material 8.3
3.1
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1130
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.3 to 3.4
230
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 340
270
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 16 to 26
25
Strength to Weight: Bending, points 23 to 32
23
Thermal Diffusivity, mm2/s 50 to 62
4.5
Thermal Shock Resistance, points 8.0 to 13
15

Alloy Composition

Aluminum (Al), % 88.4 to 93.6
0
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 0 to 0.25
18 to 20
Copper (Cu), % 3.5 to 4.5
0
Iron (Fe), % 0 to 1.0
65.6 to 71.8
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Nickel (Ni), % 1.7 to 2.3
9.0 to 11
Nitrogen (N), % 0
0.12 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.7
1.0 to 2.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0