MakeItFrom.com
Menu (ESC)

242.0 Aluminum vs. EN 1.4913 Stainless Steel

242.0 aluminum belongs to the aluminum alloys classification, while EN 1.4913 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 242.0 aluminum and the bottom bar is EN 1.4913 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 0.5 to 1.5
14 to 22
Fatigue Strength, MPa 55 to 110
320 to 480
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Shear Strength, MPa 150 to 240
550 to 590
Tensile Strength: Ultimate (UTS), MPa 180 to 290
870 to 980
Tensile Strength: Yield (Proof), MPa 120 to 220
480 to 850

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 210
700
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 530
1410
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 130 to 170
24
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 44
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 96 to 130
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.0
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.9
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1130
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.3 to 3.4
130 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 340
600 to 1860
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 16 to 26
31 to 35
Strength to Weight: Bending, points 23 to 32
26 to 28
Thermal Diffusivity, mm2/s 50 to 62
6.5
Thermal Shock Resistance, points 8.0 to 13
31 to 34

Alloy Composition

Aluminum (Al), % 88.4 to 93.6
0 to 0.020
Boron (B), % 0
0 to 0.0015
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0 to 0.25
10 to 11.5
Copper (Cu), % 3.5 to 4.5
0
Iron (Fe), % 0 to 1.0
84.5 to 88.3
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.35
0.4 to 0.9
Molybdenum (Mo), % 0
0.5 to 0.8
Nickel (Ni), % 1.7 to 2.3
0.2 to 0.6
Niobium (Nb), % 0
0.25 to 0.55
Nitrogen (N), % 0
0.050 to 0.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.7
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0.1 to 0.3
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0

Comparable Variants