MakeItFrom.com
Menu (ESC)

242.0 Aluminum vs. CC498K Bronze

242.0 aluminum belongs to the aluminum alloys classification, while CC498K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 242.0 aluminum and the bottom bar is CC498K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70 to 110
78
Elastic (Young's, Tensile) Modulus, GPa 73
110
Elongation at Break, % 0.5 to 1.5
14
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
41
Tensile Strength: Ultimate (UTS), MPa 180 to 290
260
Tensile Strength: Yield (Proof), MPa 120 to 220
130

Thermal Properties

Latent Heat of Fusion, J/g 390
190
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 640
1000
Melting Onset (Solidus), °C 530
920
Specific Heat Capacity, J/kg-K 870
370
Thermal Conductivity, W/m-K 130 to 170
73
Thermal Expansion, µm/m-K 22
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 44
10
Electrical Conductivity: Equal Weight (Specific), % IACS 96 to 130
10

Otherwise Unclassified Properties

Base Metal Price, % relative 12
32
Density, g/cm3 3.1
8.8
Embodied Carbon, kg CO2/kg material 8.3
3.2
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1130
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.3 to 3.4
30
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 340
72
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 45
18
Strength to Weight: Axial, points 16 to 26
8.1
Strength to Weight: Bending, points 23 to 32
10
Thermal Diffusivity, mm2/s 50 to 62
22
Thermal Shock Resistance, points 8.0 to 13
9.3

Alloy Composition

Aluminum (Al), % 88.4 to 93.6
0 to 0.010
Antimony (Sb), % 0
0 to 0.25
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 3.5 to 4.5
85 to 90
Iron (Fe), % 0 to 1.0
0 to 0.25
Lead (Pb), % 0
1.0 to 2.0
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 1.7 to 2.3
0 to 1.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.7
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0
5.5 to 6.5
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
3.0 to 5.0
Residuals, % 0 to 0.15
0