MakeItFrom.com
Menu (ESC)

242.0 Aluminum vs. Nickel 690

242.0 aluminum belongs to the aluminum alloys classification, while nickel 690 belongs to the nickel alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 242.0 aluminum and the bottom bar is nickel 690.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70 to 110
90
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 0.5 to 1.5
3.4 to 34
Fatigue Strength, MPa 55 to 110
180 to 300
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Shear Strength, MPa 150 to 240
420 to 570
Tensile Strength: Ultimate (UTS), MPa 180 to 290
640 to 990
Tensile Strength: Yield (Proof), MPa 120 to 220
250 to 760

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 210
1010
Melting Completion (Liquidus), °C 640
1380
Melting Onset (Solidus), °C 530
1340
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 130 to 170
14
Thermal Expansion, µm/m-K 22
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 44
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 96 to 130
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
50
Density, g/cm3 3.1
8.3
Embodied Carbon, kg CO2/kg material 8.3
8.2
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1130
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.3 to 3.4
31 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 340
160 to 1440
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 16 to 26
21 to 33
Strength to Weight: Bending, points 23 to 32
20 to 27
Thermal Diffusivity, mm2/s 50 to 62
3.5
Thermal Shock Resistance, points 8.0 to 13
16 to 25

Alloy Composition

Aluminum (Al), % 88.4 to 93.6
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.25
27 to 31
Copper (Cu), % 3.5 to 4.5
0 to 0.5
Iron (Fe), % 0 to 1.0
7.0 to 11
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.35
0 to 0.5
Nickel (Ni), % 1.7 to 2.3
58 to 66
Silicon (Si), % 0 to 0.7
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0

Comparable Variants