MakeItFrom.com
Menu (ESC)

242.0 Aluminum vs. S35315 Stainless Steel

242.0 aluminum belongs to the aluminum alloys classification, while S35315 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 242.0 aluminum and the bottom bar is S35315 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70 to 110
190
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 0.5 to 1.5
46
Fatigue Strength, MPa 55 to 110
280
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Shear Strength, MPa 150 to 240
520
Tensile Strength: Ultimate (UTS), MPa 180 to 290
740
Tensile Strength: Yield (Proof), MPa 120 to 220
300

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 640
1370
Melting Onset (Solidus), °C 530
1330
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 130 to 170
12
Thermal Expansion, µm/m-K 22
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 44
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 96 to 130
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 12
34
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 8.3
5.7
Embodied Energy, MJ/kg 150
81
Embodied Water, L/kg 1130
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.3 to 3.4
270
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 340
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 16 to 26
26
Strength to Weight: Bending, points 23 to 32
23
Thermal Diffusivity, mm2/s 50 to 62
3.1
Thermal Shock Resistance, points 8.0 to 13
17

Alloy Composition

Aluminum (Al), % 88.4 to 93.6
0
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.030 to 0.1
Chromium (Cr), % 0 to 0.25
24 to 26
Copper (Cu), % 3.5 to 4.5
0
Iron (Fe), % 0 to 1.0
33.6 to 40.6
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.35
0 to 2.0
Nickel (Ni), % 1.7 to 2.3
34 to 36
Nitrogen (N), % 0
0.12 to 0.18
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.7
1.2 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0