MakeItFrom.com
Menu (ESC)

2618 Aluminum vs. EN 1.4724 Stainless Steel

2618 aluminum belongs to the aluminum alloys classification, while EN 1.4724 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2618 aluminum and the bottom bar is EN 1.4724 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
170
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.8
16
Fatigue Strength, MPa 110
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Shear Strength, MPa 260
340
Tensile Strength: Ultimate (UTS), MPa 420
550
Tensile Strength: Yield (Proof), MPa 350
280

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 210
850
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 550
1390
Specific Heat Capacity, J/kg-K 880
490
Thermal Conductivity, W/m-K 160
21
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
7.0
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.0
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 1150
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
73
Resilience: Unit (Modulus of Resilience), kJ/m3 850
210
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 40
20
Strength to Weight: Bending, points 42
19
Thermal Diffusivity, mm2/s 62
5.6
Thermal Shock Resistance, points 19
19

Alloy Composition

Aluminum (Al), % 92.4 to 94.9
0.7 to 1.2
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 1.9 to 2.7
0
Iron (Fe), % 0.9 to 1.3
82.2 to 86.6
Magnesium (Mg), % 1.3 to 1.8
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0.9 to 1.2
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.1 to 0.25
0.7 to 1.4
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.040 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0