MakeItFrom.com
Menu (ESC)

2618 Aluminum vs. S44536 Stainless Steel

2618 aluminum belongs to the aluminum alloys classification, while S44536 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2618 aluminum and the bottom bar is S44536 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
170
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 5.8
22
Fatigue Strength, MPa 110
190
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
78
Shear Strength, MPa 260
290
Tensile Strength: Ultimate (UTS), MPa 420
460
Tensile Strength: Yield (Proof), MPa 350
280

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 210
990
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 550
1390
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 160
21
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
13
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.8
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1150
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
89
Resilience: Unit (Modulus of Resilience), kJ/m3 850
200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 40
17
Strength to Weight: Bending, points 42
17
Thermal Diffusivity, mm2/s 62
5.6
Thermal Shock Resistance, points 19
16

Alloy Composition

Aluminum (Al), % 92.4 to 94.9
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 1.9 to 2.7
0
Iron (Fe), % 0.9 to 1.3
72.8 to 80
Magnesium (Mg), % 1.3 to 1.8
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0.9 to 1.2
0 to 0.5
Niobium (Nb), % 0
0.050 to 0.8
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.1 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.040 to 0.1
0 to 0.8
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0