MakeItFrom.com
Menu (ESC)

295.0 Aluminum vs. 8090 Aluminum

Both 295.0 aluminum and 8090 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 295.0 aluminum and the bottom bar is 8090 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
67
Elongation at Break, % 2.0 to 7.2
3.5 to 13
Fatigue Strength, MPa 44 to 55
91 to 140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Tensile Strength: Ultimate (UTS), MPa 230 to 280
340 to 490
Tensile Strength: Yield (Proof), MPa 100 to 220
210 to 420

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 640
660
Melting Onset (Solidus), °C 530
600
Specific Heat Capacity, J/kg-K 880
960
Thermal Conductivity, W/m-K 140
95 to 160
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
20
Electrical Conductivity: Equal Weight (Specific), % IACS 100
66

Otherwise Unclassified Properties

Base Metal Price, % relative 10
18
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 7.9
8.6
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1140
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.2 to 13
16 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 340
340 to 1330
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 21 to 26
34 to 49
Strength to Weight: Bending, points 27 to 32
39 to 50
Thermal Diffusivity, mm2/s 54
36 to 60
Thermal Shock Resistance, points 9.8 to 12
15 to 22

Alloy Composition

Aluminum (Al), % 91.4 to 95.3
93 to 98.4
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 4.0 to 5.0
1.0 to 1.6
Iron (Fe), % 0 to 1.0
0 to 0.3
Lithium (Li), % 0
2.2 to 2.7
Magnesium (Mg), % 0 to 0.030
0.6 to 1.3
Manganese (Mn), % 0 to 0.35
0 to 0.1
Silicon (Si), % 0.7 to 1.5
0 to 0.2
Titanium (Ti), % 0 to 0.25
0 to 0.1
Zinc (Zn), % 0 to 0.35
0 to 0.25
Zirconium (Zr), % 0
0.040 to 0.16
Residuals, % 0
0 to 0.15