MakeItFrom.com
Menu (ESC)

295.0 Aluminum vs. ACI-ASTM CN7MS Steel

295.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CN7MS steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 295.0 aluminum and the bottom bar is ACI-ASTM CN7MS steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 93
160
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 2.0 to 7.2
39
Fatigue Strength, MPa 44 to 55
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 230 to 280
540
Tensile Strength: Yield (Proof), MPa 100 to 220
230

Thermal Properties

Latent Heat of Fusion, J/g 400
340
Maximum Temperature: Mechanical, °C 170
1040
Melting Completion (Liquidus), °C 640
1400
Melting Onset (Solidus), °C 530
1350
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 140
12
Thermal Expansion, µm/m-K 23
16

Otherwise Unclassified Properties

Base Metal Price, % relative 10
28
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 7.9
5.1
Embodied Energy, MJ/kg 150
71
Embodied Water, L/kg 1140
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.2 to 13
170
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 340
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 21 to 26
19
Strength to Weight: Bending, points 27 to 32
19
Thermal Diffusivity, mm2/s 54
3.2
Thermal Shock Resistance, points 9.8 to 12
13

Alloy Composition

Aluminum (Al), % 91.4 to 95.3
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 4.0 to 5.0
1.5 to 2.0
Iron (Fe), % 0 to 1.0
45.4 to 53.5
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0
22 to 25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.7 to 1.5
2.5 to 3.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0