MakeItFrom.com
Menu (ESC)

295.0 Aluminum vs. AISI 310S Stainless Steel

295.0 aluminum belongs to the aluminum alloys classification, while AISI 310S stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 295.0 aluminum and the bottom bar is AISI 310S stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 93
170 to 210
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 2.0 to 7.2
34 to 44
Fatigue Strength, MPa 44 to 55
250 to 280
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
79
Shear Strength, MPa 180 to 230
420 to 470
Tensile Strength: Ultimate (UTS), MPa 230 to 280
600 to 710
Tensile Strength: Yield (Proof), MPa 100 to 220
270 to 350

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 530
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 140
16
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
25
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 7.9
4.3
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 1140
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.2 to 13
200 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 340
190 to 310
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 21 to 26
21 to 25
Strength to Weight: Bending, points 27 to 32
20 to 22
Thermal Diffusivity, mm2/s 54
4.1
Thermal Shock Resistance, points 9.8 to 12
14 to 16

Alloy Composition

Aluminum (Al), % 91.4 to 95.3
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.0
48.3 to 57
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.35
0 to 2.0
Nickel (Ni), % 0
19 to 22
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.7 to 1.5
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0