MakeItFrom.com
Menu (ESC)

295.0 Aluminum vs. AWS E410

295.0 aluminum belongs to the aluminum alloys classification, while AWS E410 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 295.0 aluminum and the bottom bar is AWS E410.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 2.0 to 7.2
23
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 230 to 280
580
Tensile Strength: Yield (Proof), MPa 100 to 220
440

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 530
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 140
28
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 100
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.5
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 7.9
2.0
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 1140
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.2 to 13
120
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 340
500
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 21 to 26
21
Strength to Weight: Bending, points 27 to 32
20
Thermal Diffusivity, mm2/s 54
7.5
Thermal Shock Resistance, points 9.8 to 12
16

Alloy Composition

Aluminum (Al), % 91.4 to 95.3
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
11 to 13.5
Copper (Cu), % 4.0 to 5.0
0 to 0.75
Iron (Fe), % 0 to 1.0
82.2 to 89
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0
0 to 0.7
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.7 to 1.5
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0