MakeItFrom.com
Menu (ESC)

295.0 Aluminum vs. EN 1.3542 Stainless Steel

295.0 aluminum belongs to the aluminum alloys classification, while EN 1.3542 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 295.0 aluminum and the bottom bar is EN 1.3542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 93
220
Elastic (Young's, Tensile) Modulus, GPa 71
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 230 to 280
720

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 170
770
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 530
1390
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 140
29
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 100
3.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.5
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 7.9
2.0
Embodied Energy, MJ/kg 150
29
Embodied Water, L/kg 1140
100

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 21 to 26
26
Strength to Weight: Bending, points 27 to 32
23
Thermal Diffusivity, mm2/s 54
7.9
Thermal Shock Resistance, points 9.8 to 12
26

Alloy Composition

Aluminum (Al), % 91.4 to 95.3
0
Carbon (C), % 0
0.6 to 0.7
Chromium (Cr), % 0
12.5 to 14.5
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.0
82.7 to 87.5
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.7 to 1.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0