MakeItFrom.com
Menu (ESC)

295.0 Aluminum vs. EN 1.3555 Steel

295.0 aluminum belongs to the aluminum alloys classification, while EN 1.3555 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 295.0 aluminum and the bottom bar is EN 1.3555 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 93
230
Elastic (Young's, Tensile) Modulus, GPa 71
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 230 to 280
770

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 170
540
Melting Completion (Liquidus), °C 640
1500
Melting Onset (Solidus), °C 530
1450
Specific Heat Capacity, J/kg-K 880
460
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
9.3
Electrical Conductivity: Equal Weight (Specific), % IACS 100
11

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 7.9
5.6
Embodied Energy, MJ/kg 150
81
Embodied Water, L/kg 1140
90

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 21 to 26
27
Strength to Weight: Bending, points 27 to 32
23
Thermal Shock Resistance, points 9.8 to 12
22

Alloy Composition

Aluminum (Al), % 91.4 to 95.3
0
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0
3.9 to 4.3
Copper (Cu), % 4.0 to 5.0
0 to 0.1
Iron (Fe), % 0 to 1.0
85.4 to 87.7
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.35
0.15 to 0.35
Molybdenum (Mo), % 0
4.0 to 4.5
Nickel (Ni), % 0
3.2 to 3.6
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.7 to 1.5
0.1 to 0.25
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
0 to 0.15
Vanadium (V), % 0
1.0 to 1.3
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0