MakeItFrom.com
Menu (ESC)

295.0 Aluminum vs. EN 1.4805 Stainless Steel

295.0 aluminum belongs to the aluminum alloys classification, while EN 1.4805 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 295.0 aluminum and the bottom bar is EN 1.4805 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 93
140
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 2.0 to 7.2
9.0
Fatigue Strength, MPa 44 to 55
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 230 to 280
490
Tensile Strength: Yield (Proof), MPa 100 to 220
250

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 640
1390
Melting Onset (Solidus), °C 530
1350
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 140
14
Thermal Expansion, µm/m-K 23
16

Otherwise Unclassified Properties

Base Metal Price, % relative 10
26
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 7.9
4.7
Embodied Energy, MJ/kg 150
66
Embodied Water, L/kg 1140
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.2 to 13
37
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 340
150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 21 to 26
17
Strength to Weight: Bending, points 27 to 32
18
Thermal Diffusivity, mm2/s 54
3.7
Thermal Shock Resistance, points 9.8 to 12
11

Alloy Composition

Aluminum (Al), % 91.4 to 95.3
0
Carbon (C), % 0
0.2 to 0.5
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.0
44.9 to 56.8
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.35
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
23 to 27
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.7 to 1.5
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0