MakeItFrom.com
Menu (ESC)

295.0 Aluminum vs. EN 1.4986 Stainless Steel

295.0 aluminum belongs to the aluminum alloys classification, while EN 1.4986 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 295.0 aluminum and the bottom bar is EN 1.4986 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 93
230
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 2.0 to 7.2
18
Fatigue Strength, MPa 44 to 55
350
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 180 to 230
460
Tensile Strength: Ultimate (UTS), MPa 230 to 280
750
Tensile Strength: Yield (Proof), MPa 100 to 220
560

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 170
940
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 530
1400
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 140
15
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
25
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 7.9
4.8
Embodied Energy, MJ/kg 150
67
Embodied Water, L/kg 1140
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.2 to 13
120
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 340
790
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 21 to 26
26
Strength to Weight: Bending, points 27 to 32
23
Thermal Diffusivity, mm2/s 54
4.0
Thermal Shock Resistance, points 9.8 to 12
16

Alloy Composition

Aluminum (Al), % 91.4 to 95.3
0
Boron (B), % 0
0.050 to 0.1
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.0
59.4 to 66.6
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.35
0 to 1.5
Molybdenum (Mo), % 0
1.6 to 2.0
Nickel (Ni), % 0
15.5 to 17.5
Niobium (Nb), % 0
0.4 to 1.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.7 to 1.5
0.3 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0