MakeItFrom.com
Menu (ESC)

295.0 Aluminum vs. EN 1.4988 Stainless Steel

295.0 aluminum belongs to the aluminum alloys classification, while EN 1.4988 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 295.0 aluminum and the bottom bar is EN 1.4988 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 93
190
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 2.0 to 7.2
34
Fatigue Strength, MPa 44 to 55
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 180 to 230
430
Tensile Strength: Ultimate (UTS), MPa 230 to 280
640
Tensile Strength: Yield (Proof), MPa 100 to 220
290

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 170
920
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 530
1400
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 140
15
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
23
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 7.9
6.0
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1140
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.2 to 13
180
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 340
210
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 21 to 26
23
Strength to Weight: Bending, points 27 to 32
21
Thermal Diffusivity, mm2/s 54
4.0
Thermal Shock Resistance, points 9.8 to 12
14

Alloy Composition

Aluminum (Al), % 91.4 to 95.3
0
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.0
62.1 to 69.5
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.35
0 to 1.5
Molybdenum (Mo), % 0
1.1 to 1.5
Nickel (Ni), % 0
12.5 to 14.5
Niobium (Nb), % 0
0.4 to 1.2
Nitrogen (N), % 0
0.060 to 0.14
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.7 to 1.5
0.3 to 0.6
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0.6 to 0.85
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0