MakeItFrom.com
Menu (ESC)

295.0 Aluminum vs. N06058 Nickel

295.0 aluminum belongs to the aluminum alloys classification, while N06058 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 295.0 aluminum and the bottom bar is N06058 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
220
Elongation at Break, % 2.0 to 7.2
45
Fatigue Strength, MPa 44 to 55
350
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
86
Shear Strength, MPa 180 to 230
600
Tensile Strength: Ultimate (UTS), MPa 230 to 280
860
Tensile Strength: Yield (Proof), MPa 100 to 220
410

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 640
1540
Melting Onset (Solidus), °C 530
1490
Specific Heat Capacity, J/kg-K 880
420
Thermal Conductivity, W/m-K 140
9.8
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
70
Density, g/cm3 3.0
8.8
Embodied Carbon, kg CO2/kg material 7.9
13
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.2 to 13
320
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 340
370
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 21 to 26
27
Strength to Weight: Bending, points 27 to 32
23
Thermal Diffusivity, mm2/s 54
2.6
Thermal Shock Resistance, points 9.8 to 12
23

Alloy Composition

Aluminum (Al), % 91.4 to 95.3
0 to 0.4
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 4.0 to 5.0
0 to 0.5
Iron (Fe), % 0 to 1.0
0 to 1.5
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.35
0 to 0.5
Molybdenum (Mo), % 0
19 to 21
Nickel (Ni), % 0
52.2 to 61
Nitrogen (N), % 0
0.020 to 0.15
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.7 to 1.5
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
0 to 0.3
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0