MakeItFrom.com
Menu (ESC)

295.0 Aluminum vs. N06110 Nickel

295.0 aluminum belongs to the aluminum alloys classification, while N06110 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 295.0 aluminum and the bottom bar is N06110 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 2.0 to 7.2
53
Fatigue Strength, MPa 44 to 55
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
84
Shear Strength, MPa 180 to 230
530
Tensile Strength: Ultimate (UTS), MPa 230 to 280
730
Tensile Strength: Yield (Proof), MPa 100 to 220
330

Thermal Properties

Latent Heat of Fusion, J/g 400
340
Maximum Temperature: Mechanical, °C 170
1020
Melting Completion (Liquidus), °C 640
1490
Melting Onset (Solidus), °C 530
1440
Specific Heat Capacity, J/kg-K 880
440
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
65
Density, g/cm3 3.0
8.6
Embodied Carbon, kg CO2/kg material 7.9
11
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1140
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.2 to 13
320
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 340
260
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 21 to 26
23
Strength to Weight: Bending, points 27 to 32
21
Thermal Shock Resistance, points 9.8 to 12
20

Alloy Composition

Aluminum (Al), % 91.4 to 95.3
0 to 1.0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
28 to 33
Copper (Cu), % 4.0 to 5.0
0 to 0.5
Iron (Fe), % 0 to 1.0
0 to 1.0
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
9.0 to 12
Nickel (Ni), % 0
51 to 62
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.5
Silicon (Si), % 0.7 to 1.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0 to 1.0
Tungsten (W), % 0
1.0 to 4.0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0