MakeItFrom.com
Menu (ESC)

295.0 Aluminum vs. S35125 Stainless Steel

295.0 aluminum belongs to the aluminum alloys classification, while S35125 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 295.0 aluminum and the bottom bar is S35125 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 2.0 to 7.2
39
Fatigue Strength, MPa 44 to 55
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Shear Strength, MPa 180 to 230
370
Tensile Strength: Ultimate (UTS), MPa 230 to 280
540
Tensile Strength: Yield (Proof), MPa 100 to 220
230

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 530
1380
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 140
12
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
36
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 7.9
6.4
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1140
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.2 to 13
170
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 340
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 21 to 26
19
Strength to Weight: Bending, points 27 to 32
18
Thermal Diffusivity, mm2/s 54
3.1
Thermal Shock Resistance, points 9.8 to 12
12

Alloy Composition

Aluminum (Al), % 91.4 to 95.3
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.0
36.2 to 45.8
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.35
1.0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
31 to 35
Niobium (Nb), % 0
0.25 to 0.6
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.7 to 1.5
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0