MakeItFrom.com
Menu (ESC)

295.0-T6 Aluminum vs. 6110A-T6 Aluminum

Both 295.0-T6 aluminum and 6110A-T6 aluminum are aluminum alloys. Both are furnished in the T6 temper. They have a very high 96% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 295.0-T6 aluminum and the bottom bar is 6110A-T6 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
70
Elongation at Break, % 3.8
11
Fatigue Strength, MPa 50
180
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 210
280
Tensile Strength: Ultimate (UTS), MPa 250
470
Tensile Strength: Yield (Proof), MPa 160
430

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 530
600
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 140
160
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
42
Electrical Conductivity: Equal Weight (Specific), % IACS 100
140

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 3.0
2.8
Embodied Carbon, kg CO2/kg material 7.9
8.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.3
52
Resilience: Unit (Modulus of Resilience), kJ/m3 180
1300
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 23
47
Strength to Weight: Bending, points 29
48
Thermal Diffusivity, mm2/s 54
65
Thermal Shock Resistance, points 11
21

Alloy Composition

Aluminum (Al), % 91.4 to 95.3
94.8 to 98
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 4.0 to 5.0
0.3 to 0.8
Iron (Fe), % 0 to 1.0
0 to 0.5
Magnesium (Mg), % 0 to 0.030
0.7 to 1.1
Manganese (Mn), % 0 to 0.35
0.3 to 0.9
Silicon (Si), % 0.7 to 1.5
0.7 to 1.1
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 0 to 0.35
0 to 0.2
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15