MakeItFrom.com
Menu (ESC)

296.0 Aluminum vs. EN 1.4525 Stainless Steel

296.0 aluminum belongs to the aluminum alloys classification, while EN 1.4525 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 296.0 aluminum and the bottom bar is EN 1.4525 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 3.2 to 7.1
5.6 to 13
Fatigue Strength, MPa 47 to 70
480 to 540
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 260 to 270
1030 to 1250
Tensile Strength: Yield (Proof), MPa 120 to 180
840 to 1120

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 170
860
Melting Completion (Liquidus), °C 630
1430
Melting Onset (Solidus), °C 540
1390
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 130 to 150
18
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 37
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 99 to 110
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
13
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 7.8
2.8
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1110
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 15
68 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 220
1820 to 3230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 24 to 25
36 to 45
Strength to Weight: Bending, points 30 to 31
29 to 33
Thermal Diffusivity, mm2/s 51 to 56
4.7
Thermal Shock Resistance, points 12
34 to 41

Alloy Composition

Aluminum (Al), % 89 to 94
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 4.0 to 5.0
2.5 to 4.0
Iron (Fe), % 0 to 1.2
70.4 to 79
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.8
Nickel (Ni), % 0 to 0.35
3.5 to 5.5
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 2.0 to 3.0
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.35
0

Comparable Variants