MakeItFrom.com
Menu (ESC)

296.0 Aluminum vs. EN 1.7383 Steel

296.0 aluminum belongs to the aluminum alloys classification, while EN 1.7383 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 296.0 aluminum and the bottom bar is EN 1.7383 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 90
170 to 180
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 3.2 to 7.1
20 to 23
Fatigue Strength, MPa 47 to 70
210 to 270
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Tensile Strength: Ultimate (UTS), MPa 260 to 270
560 to 610
Tensile Strength: Yield (Proof), MPa 120 to 180
300 to 400

Thermal Properties

Latent Heat of Fusion, J/g 420
260
Maximum Temperature: Mechanical, °C 170
460
Melting Completion (Liquidus), °C 630
1470
Melting Onset (Solidus), °C 540
1430
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 130 to 150
39
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 37
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 99 to 110
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 11
3.9
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 7.8
1.8
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1110
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 15
110
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 220
240 to 420
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 24 to 25
20 to 22
Strength to Weight: Bending, points 30 to 31
19 to 20
Thermal Diffusivity, mm2/s 51 to 56
11
Thermal Shock Resistance, points 12
16 to 18

Alloy Composition

Aluminum (Al), % 89 to 94
0 to 0.040
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 4.0 to 5.0
0 to 0.3
Iron (Fe), % 0 to 1.2
94.3 to 96.6
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.35
0.4 to 0.8
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.35
0 to 0.3
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 2.0 to 3.0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.35
0