MakeItFrom.com
Menu (ESC)

296.0 Aluminum vs. EN 1.8152 Steel

296.0 aluminum belongs to the aluminum alloys classification, while EN 1.8152 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 296.0 aluminum and the bottom bar is EN 1.8152 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 90
200 to 540
Elastic (Young's, Tensile) Modulus, GPa 72
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 260 to 270
660 to 2010

Thermal Properties

Latent Heat of Fusion, J/g 420
270
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 630
1440
Melting Onset (Solidus), °C 540
1400
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 130 to 150
47
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 37
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 99 to 110
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.2
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 7.8
1.8
Embodied Energy, MJ/kg 150
25
Embodied Water, L/kg 1110
49

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 24 to 25
24 to 72
Strength to Weight: Bending, points 30 to 31
22 to 46
Thermal Diffusivity, mm2/s 51 to 56
13
Thermal Shock Resistance, points 12
20 to 60

Alloy Composition

Aluminum (Al), % 89 to 94
0
Carbon (C), % 0
0.51 to 0.59
Chromium (Cr), % 0
0.5 to 0.8
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.2
96 to 97.2
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.35
0.5 to 0.8
Nickel (Ni), % 0 to 0.35
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 2.0 to 3.0
1.2 to 1.6
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0.1 to 0.2
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.35
0