MakeItFrom.com
Menu (ESC)

296.0 Aluminum vs. EN 2.4680 Cast Nickel

296.0 aluminum belongs to the aluminum alloys classification, while EN 2.4680 cast nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 296.0 aluminum and the bottom bar is EN 2.4680 cast nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 3.2 to 7.1
9.1
Fatigue Strength, MPa 47 to 70
120
Poisson's Ratio 0.33
0.26
Shear Modulus, GPa 27
84
Tensile Strength: Ultimate (UTS), MPa 260 to 270
600
Tensile Strength: Yield (Proof), MPa 120 to 180
260

Thermal Properties

Latent Heat of Fusion, J/g 420
350
Maximum Temperature: Mechanical, °C 170
1050
Melting Completion (Liquidus), °C 630
1360
Melting Onset (Solidus), °C 540
1320
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 130 to 150
14
Thermal Expansion, µm/m-K 22
15

Otherwise Unclassified Properties

Base Metal Price, % relative 11
60
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 7.8
9.1
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1110
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 15
45
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 220
160
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 24 to 25
21
Strength to Weight: Bending, points 30 to 31
20
Thermal Diffusivity, mm2/s 51 to 56
3.7
Thermal Shock Resistance, points 12
14

Alloy Composition

Aluminum (Al), % 89 to 94
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
48 to 52
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.2
0 to 1.0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.35
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.35
42.9 to 51
Niobium (Nb), % 0
1.0 to 1.8
Nitrogen (N), % 0
0 to 0.16
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 2.0 to 3.0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.35
0