MakeItFrom.com
Menu (ESC)

296.0 Aluminum vs. Monel R-405

296.0 aluminum belongs to the aluminum alloys classification, while Monel R-405 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 296.0 aluminum and the bottom bar is Monel R-405.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
160
Elongation at Break, % 3.2 to 7.1
9.1 to 39
Fatigue Strength, MPa 47 to 70
210 to 250
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
62
Tensile Strength: Ultimate (UTS), MPa 260 to 270
540 to 630
Tensile Strength: Yield (Proof), MPa 120 to 180
190 to 350

Thermal Properties

Latent Heat of Fusion, J/g 420
270
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 630
1350
Melting Onset (Solidus), °C 540
1300
Specific Heat Capacity, J/kg-K 870
430
Thermal Conductivity, W/m-K 130 to 150
23
Thermal Expansion, µm/m-K 22
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 37
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 99 to 110
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
50
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 7.8
7.9
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1110
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 15
49 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 220
120 to 370
Stiffness to Weight: Axial, points 13
10
Stiffness to Weight: Bending, points 46
21
Strength to Weight: Axial, points 24 to 25
17 to 20
Strength to Weight: Bending, points 30 to 31
17 to 18
Thermal Diffusivity, mm2/s 51 to 56
5.9
Thermal Shock Resistance, points 12
17 to 20

Alloy Composition

Aluminum (Al), % 89 to 94
0
Carbon (C), % 0
0 to 0.3
Copper (Cu), % 4.0 to 5.0
28 to 34
Iron (Fe), % 0 to 1.2
0 to 2.5
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.35
0 to 2.0
Nickel (Ni), % 0 to 0.35
63 to 72
Silicon (Si), % 2.0 to 3.0
0 to 0.5
Sulfur (S), % 0
0.025 to 0.060
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.35
0