MakeItFrom.com
Menu (ESC)

296.0 Aluminum vs. SAE-AISI 1141 Steel

296.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1141 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 296.0 aluminum and the bottom bar is SAE-AISI 1141 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 90
210 to 220
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 3.2 to 7.1
11 to 17
Fatigue Strength, MPa 47 to 70
270 to 430
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 260 to 270
740 to 810
Tensile Strength: Yield (Proof), MPa 120 to 180
400 to 700

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 540
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 130 to 150
51
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 37
10
Electrical Conductivity: Equal Weight (Specific), % IACS 99 to 110
12

Otherwise Unclassified Properties

Base Metal Price, % relative 11
1.9
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 7.8
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1110
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 15
86 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 220
430 to 1290
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 24 to 25
26 to 29
Strength to Weight: Bending, points 30 to 31
23 to 25
Thermal Diffusivity, mm2/s 51 to 56
14
Thermal Shock Resistance, points 12
24 to 26

Alloy Composition

Aluminum (Al), % 89 to 94
0
Carbon (C), % 0
0.37 to 0.45
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.2
97.7 to 98.2
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.35
1.4 to 1.7
Nickel (Ni), % 0 to 0.35
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.0 to 3.0
0
Sulfur (S), % 0
0.080 to 0.13
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.35
0