MakeItFrom.com
Menu (ESC)

296.0 Aluminum vs. SAE-AISI D2 Steel

296.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI D2 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 296.0 aluminum and the bottom bar is SAE-AISI D2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 3.2 to 7.1
5.0 to 16
Fatigue Strength, MPa 47 to 70
310 to 860
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 260 to 270
760 to 2000
Tensile Strength: Yield (Proof), MPa 120 to 180
470 to 1510

Thermal Properties

Latent Heat of Fusion, J/g 420
270
Melting Completion (Liquidus), °C 630
1440
Melting Onset (Solidus), °C 540
1390
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 130 to 150
31
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 37
4.3
Electrical Conductivity: Equal Weight (Specific), % IACS 99 to 110
5.1

Otherwise Unclassified Properties

Base Metal Price, % relative 11
8.0
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 7.8
3.4
Embodied Energy, MJ/kg 150
50
Embodied Water, L/kg 1110
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 15
92 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 220
570 to 5940
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 24 to 25
27 to 72
Strength to Weight: Bending, points 30 to 31
24 to 46
Thermal Diffusivity, mm2/s 51 to 56
8.3
Thermal Shock Resistance, points 12
25 to 67

Alloy Composition

Aluminum (Al), % 89 to 94
0
Carbon (C), % 0
1.4 to 1.6
Chromium (Cr), % 0
11 to 13
Copper (Cu), % 4.0 to 5.0
0 to 0.25
Iron (Fe), % 0 to 1.2
81.3 to 86.9
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.35
0 to 0.6
Molybdenum (Mo), % 0
0.7 to 1.2
Nickel (Ni), % 0 to 0.35
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 2.0 to 3.0
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0 to 1.1
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.35
0