MakeItFrom.com
Menu (ESC)

296.0 Aluminum vs. C66700 Brass

296.0 aluminum belongs to the aluminum alloys classification, while C66700 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 296.0 aluminum and the bottom bar is C66700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
110
Elongation at Break, % 3.2 to 7.1
2.0 to 58
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
41
Tensile Strength: Ultimate (UTS), MPa 260 to 270
340 to 690
Tensile Strength: Yield (Proof), MPa 120 to 180
100 to 640

Thermal Properties

Latent Heat of Fusion, J/g 420
180
Maximum Temperature: Mechanical, °C 170
140
Melting Completion (Liquidus), °C 630
1090
Melting Onset (Solidus), °C 540
1050
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 130 to 150
97
Thermal Expansion, µm/m-K 22
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 37
17
Electrical Conductivity: Equal Weight (Specific), % IACS 99 to 110
19

Otherwise Unclassified Properties

Base Metal Price, % relative 11
25
Density, g/cm3 3.0
8.2
Embodied Carbon, kg CO2/kg material 7.8
2.7
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1110
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 15
13 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 220
49 to 1900
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 24 to 25
11 to 23
Strength to Weight: Bending, points 30 to 31
13 to 21
Thermal Diffusivity, mm2/s 51 to 56
30
Thermal Shock Resistance, points 12
11 to 23

Alloy Composition

Aluminum (Al), % 89 to 94
0
Copper (Cu), % 4.0 to 5.0
68.5 to 71.5
Iron (Fe), % 0 to 1.2
0 to 0.1
Lead (Pb), % 0
0 to 0.070
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.35
0.8 to 1.5
Nickel (Ni), % 0 to 0.35
0
Silicon (Si), % 2.0 to 3.0
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.5
26.3 to 30.7
Residuals, % 0
0 to 0.5