MakeItFrom.com
Menu (ESC)

296.0 Aluminum vs. C82200 Copper

296.0 aluminum belongs to the aluminum alloys classification, while C82200 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 296.0 aluminum and the bottom bar is C82200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
120
Elongation at Break, % 3.2 to 7.1
8.0 to 20
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
44
Tensile Strength: Ultimate (UTS), MPa 260 to 270
390 to 660
Tensile Strength: Yield (Proof), MPa 120 to 180
210 to 520

Thermal Properties

Latent Heat of Fusion, J/g 420
220
Maximum Temperature: Mechanical, °C 170
230
Melting Completion (Liquidus), °C 630
1080
Melting Onset (Solidus), °C 540
1040
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 130 to 150
180
Thermal Expansion, µm/m-K 22
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 37
45
Electrical Conductivity: Equal Weight (Specific), % IACS 99 to 110
46

Otherwise Unclassified Properties

Base Metal Price, % relative 11
55
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 7.8
4.8
Embodied Energy, MJ/kg 150
74
Embodied Water, L/kg 1110
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 15
49 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 220
180 to 1130
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 46
18
Strength to Weight: Axial, points 24 to 25
12 to 20
Strength to Weight: Bending, points 30 to 31
13 to 19
Thermal Diffusivity, mm2/s 51 to 56
53
Thermal Shock Resistance, points 12
14 to 23

Alloy Composition

Aluminum (Al), % 89 to 94
0
Beryllium (Be), % 0
0.35 to 0.8
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 4.0 to 5.0
97.4 to 98.7
Iron (Fe), % 0 to 1.2
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 0 to 0.35
1.0 to 2.0
Silicon (Si), % 2.0 to 3.0
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.5