MakeItFrom.com
Menu (ESC)

296.0 Aluminum vs. N10001 Nickel

296.0 aluminum belongs to the aluminum alloys classification, while N10001 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 296.0 aluminum and the bottom bar is N10001 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
220
Elongation at Break, % 3.2 to 7.1
45
Fatigue Strength, MPa 47 to 70
300
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
84
Tensile Strength: Ultimate (UTS), MPa 260 to 270
780
Tensile Strength: Yield (Proof), MPa 120 to 180
350

Thermal Properties

Latent Heat of Fusion, J/g 420
320
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 630
1620
Melting Onset (Solidus), °C 540
1570
Specific Heat Capacity, J/kg-K 870
390
Thermal Expansion, µm/m-K 22
10

Otherwise Unclassified Properties

Base Metal Price, % relative 11
75
Density, g/cm3 3.0
9.2
Embodied Carbon, kg CO2/kg material 7.8
15
Embodied Energy, MJ/kg 150
200
Embodied Water, L/kg 1110
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 15
290
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 220
280
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
22
Strength to Weight: Axial, points 24 to 25
24
Strength to Weight: Bending, points 30 to 31
21
Thermal Shock Resistance, points 12
25

Alloy Composition

Aluminum (Al), % 89 to 94
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
0 to 1.0
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.2
4.0 to 6.0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
26 to 30
Nickel (Ni), % 0 to 0.35
58 to 69.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.0 to 3.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0.2 to 0.4
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.35
0