MakeItFrom.com
Menu (ESC)

296.0 Aluminum vs. N10675 Nickel

296.0 aluminum belongs to the aluminum alloys classification, while N10675 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 296.0 aluminum and the bottom bar is N10675 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
220
Elongation at Break, % 3.2 to 7.1
47
Fatigue Strength, MPa 47 to 70
350
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
85
Tensile Strength: Ultimate (UTS), MPa 260 to 270
860
Tensile Strength: Yield (Proof), MPa 120 to 180
400

Thermal Properties

Latent Heat of Fusion, J/g 420
320
Maximum Temperature: Mechanical, °C 170
910
Melting Completion (Liquidus), °C 630
1420
Melting Onset (Solidus), °C 540
1370
Specific Heat Capacity, J/kg-K 870
380
Thermal Conductivity, W/m-K 130 to 150
11
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 37
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 99 to 110
1.2

Otherwise Unclassified Properties

Base Metal Price, % relative 11
80
Density, g/cm3 3.0
9.3
Embodied Carbon, kg CO2/kg material 7.8
16
Embodied Energy, MJ/kg 150
210
Embodied Water, L/kg 1110
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 15
330
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 220
350
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
22
Strength to Weight: Axial, points 24 to 25
26
Strength to Weight: Bending, points 30 to 31
22
Thermal Diffusivity, mm2/s 51 to 56
3.1
Thermal Shock Resistance, points 12
26

Alloy Composition

Aluminum (Al), % 89 to 94
0 to 0.5
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
1.0 to 3.0
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 4.0 to 5.0
0 to 0.2
Iron (Fe), % 0 to 1.2
1.0 to 3.0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.35
0 to 3.0
Molybdenum (Mo), % 0
27 to 32
Nickel (Ni), % 0 to 0.35
51.3 to 71
Niobium (Nb), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 2.0 to 3.0
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Tantalum (Ta), % 0
0 to 0.2
Titanium (Ti), % 0 to 0.25
0 to 0.2
Tungsten (W), % 0
0 to 3.0
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.5
0 to 0.1
Residuals, % 0 to 0.35
0