MakeItFrom.com
Menu (ESC)

296.0 Aluminum vs. R60705 Alloy

296.0 aluminum belongs to the aluminum alloys classification, while R60705 alloy belongs to the otherwise unclassified metals. There are 21 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 296.0 aluminum and the bottom bar is R60705 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
98
Elongation at Break, % 3.2 to 7.1
18
Fatigue Strength, MPa 47 to 70
290
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
37
Tensile Strength: Ultimate (UTS), MPa 260 to 270
540
Tensile Strength: Yield (Proof), MPa 120 to 180
430

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Specific Heat Capacity, J/kg-K 870
270
Thermal Conductivity, W/m-K 130 to 150
17
Thermal Expansion, µm/m-K 22
6.3

Otherwise Unclassified Properties

Density, g/cm3 3.0
6.7
Embodied Water, L/kg 1110
450

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 15
90
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 220
950
Stiffness to Weight: Axial, points 13
8.1
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 24 to 25
22
Strength to Weight: Bending, points 30 to 31
22
Thermal Diffusivity, mm2/s 51 to 56
9.5
Thermal Shock Resistance, points 12
63

Alloy Composition

Aluminum (Al), % 89 to 94
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 4.0 to 5.0
0
Hafnium (Hf), % 0
0 to 4.5
Hydrogen (H), % 0
0 to 0.0050
Iron (Fe), % 0 to 1.2
0 to 0.2
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 0 to 0.35
0
Niobium (Nb), % 0
2.0 to 3.0
Nitrogen (N), % 0
0 to 0.025
Oxygen (O), % 0
0 to 0.18
Silicon (Si), % 2.0 to 3.0
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.5
0
Zirconium (Zr), % 0
91 to 98
Residuals, % 0 to 0.35
0