MakeItFrom.com
Menu (ESC)

296.0 Aluminum vs. S13800 Stainless Steel

296.0 aluminum belongs to the aluminum alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 296.0 aluminum and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 90
290 to 480
Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 3.2 to 7.1
11 to 18
Fatigue Strength, MPa 47 to 70
410 to 870
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 260 to 270
980 to 1730
Tensile Strength: Yield (Proof), MPa 120 to 180
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 170
810
Melting Completion (Liquidus), °C 630
1450
Melting Onset (Solidus), °C 540
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 130 to 150
16
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 37
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 99 to 110
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
15
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 7.8
3.4
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1110
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 15
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 220
1090 to 5490
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 24 to 25
35 to 61
Strength to Weight: Bending, points 30 to 31
28 to 41
Thermal Diffusivity, mm2/s 51 to 56
4.3
Thermal Shock Resistance, points 12
33 to 58

Alloy Composition

Aluminum (Al), % 89 to 94
0.9 to 1.4
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12.3 to 13.2
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.2
73.6 to 77.3
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.35
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.35
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 2.0 to 3.0
0 to 0.1
Sulfur (S), % 0
0 to 0.0080
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.35
0