MakeItFrom.com
Menu (ESC)

296.0 Aluminum vs. S35135 Stainless Steel

296.0 aluminum belongs to the aluminum alloys classification, while S35135 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 296.0 aluminum and the bottom bar is S35135 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 3.2 to 7.1
34
Fatigue Strength, MPa 47 to 70
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 260 to 270
590
Tensile Strength: Yield (Proof), MPa 120 to 180
230

Thermal Properties

Latent Heat of Fusion, J/g 420
320
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 630
1430
Melting Onset (Solidus), °C 540
1380
Specific Heat Capacity, J/kg-K 870
470
Thermal Expansion, µm/m-K 22
16

Otherwise Unclassified Properties

Base Metal Price, % relative 11
37
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 7.8
6.8
Embodied Energy, MJ/kg 150
94
Embodied Water, L/kg 1110
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 15
160
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 220
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 24 to 25
20
Strength to Weight: Bending, points 30 to 31
19
Thermal Shock Resistance, points 12
13

Alloy Composition

Aluminum (Al), % 89 to 94
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
20 to 25
Copper (Cu), % 4.0 to 5.0
0 to 0.75
Iron (Fe), % 0 to 1.2
28.3 to 45
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
4.0 to 4.8
Nickel (Ni), % 0 to 0.35
30 to 38
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 2.0 to 3.0
0.6 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0.4 to 1.0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.35
0