MakeItFrom.com
Menu (ESC)

3003 Aluminum vs. AISI 415 Stainless Steel

3003 aluminum belongs to the aluminum alloys classification, while AISI 415 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3003 aluminum and the bottom bar is AISI 415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 28 to 65
260
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.1 to 28
17
Fatigue Strength, MPa 39 to 90
430
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 68 to 130
550
Tensile Strength: Ultimate (UTS), MPa 110 to 240
900
Tensile Strength: Yield (Proof), MPa 40 to 210
700

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 180
780
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 640
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 180
24
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.1
2.5
Embodied Energy, MJ/kg 150
35
Embodied Water, L/kg 1180
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.95 to 63
140
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 300
1250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 11 to 24
32
Strength to Weight: Bending, points 18 to 30
26
Thermal Diffusivity, mm2/s 71
6.4
Thermal Shock Resistance, points 4.7 to 10
33

Alloy Composition

Aluminum (Al), % 96.8 to 99
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
11.5 to 14
Copper (Cu), % 0.050 to 0.2
0
Iron (Fe), % 0 to 0.7
77.8 to 84
Manganese (Mn), % 1.0 to 1.5
0.5 to 1.0
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 0
3.5 to 5.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.6
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0