MakeItFrom.com
Menu (ESC)

3003 Aluminum vs. ASTM Grade HH Steel

3003 aluminum belongs to the aluminum alloys classification, while ASTM grade HH steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3003 aluminum and the bottom bar is ASTM grade HH steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 28 to 65
170
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.1 to 28
11
Fatigue Strength, MPa 39 to 90
150
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 110 to 240
580
Tensile Strength: Yield (Proof), MPa 40 to 210
270

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 650
1400
Melting Onset (Solidus), °C 640
1360
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 180
14
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
20
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 8.1
3.7
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1180
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.95 to 63
53
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 300
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 11 to 24
21
Strength to Weight: Bending, points 18 to 30
20
Thermal Diffusivity, mm2/s 71
3.8
Thermal Shock Resistance, points 4.7 to 10
12

Alloy Composition

Aluminum (Al), % 96.8 to 99
0
Carbon (C), % 0
0.2 to 0.5
Chromium (Cr), % 0
24 to 28
Copper (Cu), % 0.050 to 0.2
0
Iron (Fe), % 0 to 0.7
52.9 to 64.8
Manganese (Mn), % 1.0 to 1.5
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
11 to 14
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0