MakeItFrom.com
Menu (ESC)

3003 Aluminum vs. N06985 Nickel

3003 aluminum belongs to the aluminum alloys classification, while N06985 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3003 aluminum and the bottom bar is N06985 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 1.1 to 28
45
Fatigue Strength, MPa 39 to 90
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Shear Strength, MPa 68 to 130
480
Tensile Strength: Ultimate (UTS), MPa 110 to 240
690
Tensile Strength: Yield (Proof), MPa 40 to 210
260

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 180
990
Melting Completion (Liquidus), °C 650
1350
Melting Onset (Solidus), °C 640
1260
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 180
10
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.8
8.4
Embodied Carbon, kg CO2/kg material 8.1
8.8
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1180
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.95 to 63
250
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 300
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 11 to 24
23
Strength to Weight: Bending, points 18 to 30
21
Thermal Diffusivity, mm2/s 71
2.6
Thermal Shock Resistance, points 4.7 to 10
16

Alloy Composition

Aluminum (Al), % 96.8 to 99
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
21 to 23.5
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 0.050 to 0.2
1.5 to 2.5
Iron (Fe), % 0 to 0.7
18 to 21
Manganese (Mn), % 1.0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 8.0
Nickel (Ni), % 0
35.9 to 53.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
0 to 1.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0