MakeItFrom.com
Menu (ESC)

3003 Aluminum vs. N07776 Nickel

3003 aluminum belongs to the aluminum alloys classification, while N07776 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3003 aluminum and the bottom bar is N07776 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.1 to 28
39
Fatigue Strength, MPa 39 to 90
220
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 26
79
Shear Strength, MPa 68 to 130
470
Tensile Strength: Ultimate (UTS), MPa 110 to 240
700
Tensile Strength: Yield (Proof), MPa 40 to 210
270

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 180
970
Melting Completion (Liquidus), °C 650
1550
Melting Onset (Solidus), °C 640
1500
Specific Heat Capacity, J/kg-K 900
430
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
85
Density, g/cm3 2.8
8.6
Embodied Carbon, kg CO2/kg material 8.1
15
Embodied Energy, MJ/kg 150
210
Embodied Water, L/kg 1180
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.95 to 63
220
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 300
180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 11 to 24
22
Strength to Weight: Bending, points 18 to 30
20
Thermal Shock Resistance, points 4.7 to 10
20

Alloy Composition

Aluminum (Al), % 96.8 to 99
0 to 2.0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
12 to 22
Copper (Cu), % 0.050 to 0.2
0
Iron (Fe), % 0 to 0.7
0 to 24.5
Manganese (Mn), % 1.0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
9.0 to 15
Nickel (Ni), % 0
50 to 60
Niobium (Nb), % 0
4.0 to 6.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.6
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 1.0
Tungsten (W), % 0
0.5 to 2.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0