MakeItFrom.com
Menu (ESC)

3003 Aluminum vs. S20161 Stainless Steel

3003 aluminum belongs to the aluminum alloys classification, while S20161 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3003 aluminum and the bottom bar is S20161 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 28 to 65
250
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 1.1 to 28
46
Fatigue Strength, MPa 39 to 90
360
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 68 to 130
690
Tensile Strength: Ultimate (UTS), MPa 110 to 240
980
Tensile Strength: Yield (Proof), MPa 40 to 210
390

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 180
870
Melting Completion (Liquidus), °C 650
1380
Melting Onset (Solidus), °C 640
1330
Specific Heat Capacity, J/kg-K 900
490
Thermal Conductivity, W/m-K 180
15
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.8
7.5
Embodied Carbon, kg CO2/kg material 8.1
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1180
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.95 to 63
360
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 300
390
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
26
Strength to Weight: Axial, points 11 to 24
36
Strength to Weight: Bending, points 18 to 30
29
Thermal Diffusivity, mm2/s 71
4.0
Thermal Shock Resistance, points 4.7 to 10
22

Alloy Composition

Aluminum (Al), % 96.8 to 99
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
15 to 18
Copper (Cu), % 0.050 to 0.2
0
Iron (Fe), % 0 to 0.7
65.6 to 73.9
Manganese (Mn), % 1.0 to 1.5
4.0 to 6.0
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.6
3.0 to 4.0
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0