MakeItFrom.com
Menu (ESC)

3003 Aluminum vs. S32654 Stainless Steel

3003 aluminum belongs to the aluminum alloys classification, while S32654 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3003 aluminum and the bottom bar is S32654 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 28 to 65
220
Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 1.1 to 28
45
Fatigue Strength, MPa 39 to 90
450
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
82
Shear Strength, MPa 68 to 130
590
Tensile Strength: Ultimate (UTS), MPa 110 to 240
850
Tensile Strength: Yield (Proof), MPa 40 to 210
490

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 640
1410
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 180
11
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 2.8
8.0
Embodied Carbon, kg CO2/kg material 8.1
6.4
Embodied Energy, MJ/kg 150
87
Embodied Water, L/kg 1180
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.95 to 63
330
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 300
570
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 11 to 24
29
Strength to Weight: Bending, points 18 to 30
25
Thermal Diffusivity, mm2/s 71
2.9
Thermal Shock Resistance, points 4.7 to 10
19

Alloy Composition

Aluminum (Al), % 96.8 to 99
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
24 to 25
Copper (Cu), % 0.050 to 0.2
0.3 to 0.6
Iron (Fe), % 0 to 0.7
38.3 to 45.3
Manganese (Mn), % 1.0 to 1.5
2.0 to 4.0
Molybdenum (Mo), % 0
7.0 to 8.0
Nickel (Ni), % 0
21 to 23
Nitrogen (N), % 0
0.45 to 0.55
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.6
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0