MakeItFrom.com
Menu (ESC)

3003-O Aluminum vs. Annealed AISI 202

3003-O aluminum belongs to the aluminum alloys classification, while annealed AISI 202 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3003-O aluminum and the bottom bar is annealed AISI 202.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 28
210
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 28
45
Fatigue Strength, MPa 50
290
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 75
490
Tensile Strength: Ultimate (UTS), MPa 110
700
Tensile Strength: Yield (Proof), MPa 40
310

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 180
910
Melting Completion (Liquidus), °C 650
1400
Melting Onset (Solidus), °C 640
1360
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 180
15
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 8.1
2.8
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
260
Resilience: Unit (Modulus of Resilience), kJ/m3 11
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 11
25
Strength to Weight: Bending, points 18
23
Thermal Diffusivity, mm2/s 71
4.0
Thermal Shock Resistance, points 4.9
15

Alloy Composition

Aluminum (Al), % 96.8 to 99
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 0.050 to 0.2
0
Iron (Fe), % 0 to 0.7
63.5 to 71.5
Manganese (Mn), % 1.0 to 1.5
7.5 to 10
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0