MakeItFrom.com
Menu (ESC)

3004 Aluminum vs. ASTM A387 Grade 22L Class 1

3004 aluminum belongs to the aluminum alloys classification, while ASTM A387 grade 22L class 1 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3004 aluminum and the bottom bar is ASTM A387 grade 22L class 1.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 45 to 83
150
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 1.1 to 19
20
Fatigue Strength, MPa 55 to 120
160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 100 to 180
310
Tensile Strength: Ultimate (UTS), MPa 170 to 310
500
Tensile Strength: Yield (Proof), MPa 68 to 270
230

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 180
460
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 630
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
40
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.8
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 8.3
1.7
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1180
58

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 27
83
Resilience: Unit (Modulus of Resilience), kJ/m3 33 to 540
140
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 18 to 31
18
Strength to Weight: Bending, points 25 to 37
18
Thermal Diffusivity, mm2/s 65
11
Thermal Shock Resistance, points 7.6 to 13
14

Alloy Composition

Aluminum (Al), % 95.6 to 98.2
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.7
95.2 to 96.8
Magnesium (Mg), % 0.8 to 1.3
0
Manganese (Mn), % 1.0 to 1.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.3
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0