MakeItFrom.com
Menu (ESC)

3004 Aluminum vs. EN AC-45300 Aluminum

Both 3004 aluminum and EN AC-45300 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 3004 aluminum and the bottom bar is EN AC-45300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 45 to 83
94 to 120
Elastic (Young's, Tensile) Modulus, GPa 70
71
Elongation at Break, % 1.1 to 19
1.0 to 2.8
Fatigue Strength, MPa 55 to 120
59 to 72
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 170 to 310
220 to 290
Tensile Strength: Yield (Proof), MPa 68 to 270
150 to 230

Thermal Properties

Latent Heat of Fusion, J/g 400
470
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 650
630
Melting Onset (Solidus), °C 630
590
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 160
150
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
36
Electrical Conductivity: Equal Weight (Specific), % IACS 140
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 27
2.7 to 5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 33 to 540
160 to 390
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 18 to 31
23 to 29
Strength to Weight: Bending, points 25 to 37
30 to 35
Thermal Diffusivity, mm2/s 65
60
Thermal Shock Resistance, points 7.6 to 13
10 to 13

Alloy Composition

Aluminum (Al), % 95.6 to 98.2
90.2 to 94.2
Copper (Cu), % 0 to 0.25
1.0 to 1.5
Iron (Fe), % 0 to 0.7
0 to 0.65
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0.8 to 1.3
0.35 to 0.65
Manganese (Mn), % 1.0 to 1.5
0 to 0.55
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 0 to 0.3
4.5 to 5.5
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.25
0 to 0.15
Residuals, % 0
0 to 0.15